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In this paper, an exact dynamic stiffness element under the frame work of finite element
approximation is presented to study the dynamic response of multi-span structures under
a convoy of moving loads. A dynamic model coupled with a FFT algorithm is developed.
The model is highly efficient for calculating the response of bridges under multiaxle moving
forces. All the vibration frequencies and mode shapes of the beam-structure may be
calculated exactly using the Wittrick and Williams algorithm. Examples show that with
only one element per span, exact frequencies and modes could be obtained. Some results
on the dynamic amplification factor are presented also as a function of the speed of the
moving loads.
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1. INTRODUCTION

The investigation of dynamic behaviour of beam-structures under moving loads has been
a topic of interest for well over a century. A few studies were made on the problem of
the vibration of simple and continuous beams under moving loads and are available in
the textbook of Fryba [1]. Hayashikawa and Watanabe [2] apply the continuum method
of dynamic analysis to multi-span continuous beam under a concentrated moving load.
Due to new developments in rapid transport systems (fast trains, trucks with multiple
containers, etc.), it has become essential to study the behaviour of bridges under moving
loads at various speeds. Moreover, due to high strength materials, bridge structures have
become lighter with longer spans, therefore requiring detailed consideration of high
frequency models.

Before undertaking dynamic analysis, it is desirable to obtain an estimate of natural
modes and frequencies of the bridge. One can employ traditional finite element models to
obtain these [3, 4]. However for beam structures, finite element models based on exact
dynamic expressions lead to higher precision with only one element per span [2, 5, 6]. The
dynamic response under multiple moving loads may be obtained by a direct integration
technique coupled with finite element discretization. However, such an approach may
become very cumbersome and imprecise for moving loads at speeds near the resonance
frequencies of the bridge structure. It is thus common to use the modal technique to obtain
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Figure 1. Dynamic analysis procedure of beam-structure systems under moving loads.

the uncoupled system of equations which are solved by direct integration [3]. One may also
employ the FFT technique [3, 7] to obtain the solution of uncoupled system with multiple
moving loads [8, 9].

In this study, the modal technique is used coupled with an FFT algorithm to obtain the
dynamic response of continuous bridges. The contribution of the present study relates to
the utilisation of an exact dynamic approach coupled with the FFT technique for studying
the dynamic response of beam structures under multiple moving loads. A summary of
different solution techniques is presented in Figure 1.

In section 2, a dynamic finite element formulation is presented, followed by the modal
FFT approach. Three examples will be presented to demonstrate the efficiency of the new
model developed in this paper.

2. DYNAMIC FINITE ELEMENT MODEL

2.1.  

A beam-type structure is composed of beam elements interconnected at their end points
(Figure 2). The interest of this study is the development of a model of multi-span beam
structures. The weak formulation of virtual work expression of transverse vibration of
Bernoulli-Euler beams under moving loads is [10, 11, 12]

W=g
L

0

(dwmlw,tt + dwcw,t + dw,xxEIw,xx ) dx−g
L

0

dwP(x, t) dx=0, [dw, (1)

where w is the transverse displacement, w,xx, w,t are the spatial and temporal derivations
of w, dw(x) is the virtual displacement or test function, ml is the mass per unit of length
of the beam, c is the damping coefficient, E is the modulus of elasticity, I is the second
moment of area for the beam’s cross-section and P(x, t) is the moving load distribution

Figure 2. A bending beam element: (a) end displacement, (b) end forces.
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equal to d(x− xi )Fi where xi is the position of the moving concentrated moving load i and
d(x− xi ) is the Dirac delta function. It is assumed here that applied moments at both ends
of beam are zero.

The weak formulation for free vibration is obtained by considering c=0 and P(x, t)=0
and

w(x, t)=w(x) eivt; dw= dw(x), (2)

W=g
L

0

(−dwmlv
2w+ dw,xxEIw,xx ) dx=0, W=EI g

L

0

(dw,xxw,xx − dwa4w) dx=0

(3)

with a4 =mlv
2/EI. For a structure discretized by finite elements, equation (3) is written

as

W= s We =0. (4)

The finite element discretization is obtained by choosing a C1 approximation for w and
dw:

w(x)= s
i=1,4

Ni (x, a)wi , dw(x)= s
i=1,4

Ni (x, a)dwi , (5)

where EI, ml are constant per element and wl =w(x=0), w2 = u(x=0)=−w,x (x=0),
w3 =w(x=L), w4 = u(x=L)=−w,x (x=L). The traditional finite element model is
obtained by choosing a Hermite type polynomial approximation (Dhatt and Touzot [13],
Bathe [14]).

2.2.    ()
For the dynamic finite element model, the nodal approximation Ni is chosen such that

dw,xxxx − a4dw=0, �Ni,xxxx − a4Ni�{dwi}=0, (6)

where Ni satisfy the following conditions at each node:

N1(x=0)=1, N1(x=L)=0, N1,x =0 at x=0, L;

N3(x=0)=0, N3(x=L)=1, N3,x =0 at x=0, L;

N2,x (x=0)=1, N2,x (x=L)=0, N2 =0 at x=0, L;

N4,x (x=0)=0, N4,x (x=L)=1, N4 =0 at x=0, L.

The expression We may be written in the following equivalent form after two integrations
by parts of equation (3):

We =EI g
L

0

(dw,xxxx − a4dw)w dx−EI[dw,xxw,x ]L0 +EI[dw,xxxw]L0

or

We =EI g
L

0

(w,xxxx − a4w)dw dx−EI[w,xxdw,x ]L0 +EI[w,xxxdw]L0 . (7)
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The approximation satisfying equation (6) leads to a finite element model which gives exact
results as it may be deduced from equation (7) since the integral term becomes zero. The
approximation of Ni functions is obtained as follows:

w(x)= �P(a, x)�{c} (8)

with �P(a, x)�= �cos ax sin ax cosh ax sinh ax� where each term satisfies equation (6).
The coefficients ci are transformed by wi by using relations defined after equation (5):

c1 1 0 1 0 −1 w(0)
c2 0 −a 0 −a u(0)g

G
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F

f
h
G

G

J

j
G
G

G

K

k
G
G

G

L

l
g
G

G

F

f
h
G

G

J

j
c3

=
cos aL sin aL cosh aL sinh aL w(L)

. (9)

c4 a sin aL −a cos aL −a sinh aL −a cosh aL u(L)

The Ni functions defined in equation (5) are finally obtained from equations (8) and (9)
and they satisfy equation (6):

�N(a, x)�= �P(a, x)�[Pn ]−1. (10)

The expression We of equation (7) and the corresponding discretized form can be written
as

−w,xxx (x=0)

We =EI�dw(x=0) −dw,x (x=0) dw(x=L) −dw,x (x=L)�g
G

G

F

f

−w,xx (x=0) h
G

G

J

j

,
w,xxx (x=L)

w,xx (x=L)

T1

We = �dwn�[kd (v2)]{wn}= �dwn�g
G

G

F

f

M1 h
G

G

J

j

, (11)
T2

M1

where

T(x)=−EIw,xxx , M(x)=−EIw,xx , T1 =T(x=0), T2 =−T(x=L),

M1 =M(x=0), M2 =−M(x=L). (12)

The matrix [kd (v2)] is defined by

T1 −N1,xxx (0) −N2,xxx (0) −N3,xxx (0) −N4,xxx (0) w1

M1 =EI
−N1,xx (0) −N2,xx (0) N3,xx (0) −N4,xx (0) u1

g
G

G

F

f

h
G

G

J

j

G
G
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K

k

G
G

G

L

l

g
G

G

F

f

h
G
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J

j
T2 N1,xxx (L) N2,xxx (L) N3,xxx (L) N4,xxx (L) w2

M2 N1,xx (L) N2,xx (L) N3,xx (L) N4,xx (L) u2

= [kd (v2)]{wn} (13)

with �N,xxx�= �P,xxx�[Pn ]−1 and �N,xx�= �P,xx�[Pn ]−1. The dynamic stiffness matrix of
each element is given by equation (13) and in appendix A.
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Figure 3. Multi-span bridge—N span continuous beam.

2.3.  

After assembling and elimination of rows and columns corresponding to the boundary
conditions, the free vibration problem becomes

[Kd (v2)]{Un}= {0}, [K(v2)−v2M(v2)] . {Un}= {0}, (14)

where [M(v2)] is approximated by a first order linearization [15] of [Kd (v2)]:

[M(v2)]=−1[Kd (v2)]/1v2.

The solution of this non-linear eigenvalue problem (equation (14)) is performed using the
Wittrick and Williams algorithm [16]. To determine the undamped frequency vn for the
continuous beam-structure, the number n(v*) of frequencies of this structure exceeded by
a fixed trial frequency v*, is given by

n(v*)= n0(v*)+ s{Kd (v*)}, (15)

where n0(v*) is the number of frequencies exceeded by v* if all degrees of freedom of the
structure are clamped (displacements being constrained to zero) [12, 16, 17] and s{Kd (v*)}
is the number of negative diagonal elements in the triangulated dynamic stiffness [Kd (v*)]
evaluated at v=v*. An iterative method such as the bisection method is used in order
to converge to the true frequency [17].

One may remark that the discretized model contains one element per span and it leads
to an exact evaluation of the complete frequency spectrum and the mode shapes of the
bridge structure. Corresponding to each frequency v, mode shapes of the rth span are
defined by

fjr (xr )=Ajr cos (ajrxr )+Bjr sin (ajrxr )+Cjr cosh (ajrxr )+Djr sinh (ajrxr ) (16)

or

fjr (xr )= s
i=1,4

Ni (aj , xr )fi
jr ,

where fjr is the jth mode shape of the rth span (see Figure 3) and xr is the local co-ordinate
of the span r. The jth mode shape of the total structure is defined by Fj (Xr )=fjr (xr ) where

Xr = xr + s
i=1,r−1

li .
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When an element is clamped, {wn}= {0}, the vibration mode is defined by

w(xr )=fjr (xr )= s Pi (xr , aj )ci, i=1, 4 for span r.

2.4.  

The representation of equation (1) in modal space leads to a set of uncoupled relations.
Let the nodal vector {w} be expressed in modal space by

{w}= s
j=1,n

{Fj (Xr )}yj (t); {dw}= s
j=1,n

{Fj (Xr )}dyj (t), (17)

where {Fj} is the eigenvector satisfying [Kd (vj )]{Fj}= {0}. For each element, the modal
representation of transverse deflection is

w(xr , t)= s
j=1,n

Fj (Xr )yj (t)= s
j=1,n 0 s

i=1,4

Ni (aj , xr )fi
jr1yj (t), (18)

where fi
jr are the nodal displacements for the element (span) r, relative to the mode j. The

orthogonal properties of modes are verified by writing equation (7) for modes (m, p) with
test functions relative to (p, m):

Wm− p = s
r= l,nspan 0g

lr

0

(Fp,xxEIFm,xx −v2
mFpmlFm ) dx1=0,

Wp−m = s
r= l,nspan 0g

lr

0

(Fm,xxEIFp,xx −v2
pFmmlFp ) dx1=0, (19)

or

g
LT

0

(Fm,xxEIFp,xx ) dx=0; g
LT

0

(FmmlFp ) dx=0 for p$m, (20)

where lr is the length of the span r and LT =S lr is the total length of the beam structure.
One may remark that modes {Fj} are not orthogonal with respect to [K(v2)] and [M(v2)]
as in the case of a classical finite element model. The modal representation of equation
(1) becomes for each mode j and [dyj

W ( j) = dyj g
LT

0

((FjmlFj )yj,tt +(FjcFj )yj,t +(Fj,xxEI Fj,xx )yj ) dx

− dyj g
LT

0

FjP(x, t) dx=0. (21)

By considering that (reference [2]),

g
LT

0

(F2
j ) dx=M2

j = s
r=1,nspan

lr
2

(A2
jr +B2

jr +C2
jr −D2

jr ) (22)
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and using equations (22) in (21), one obtains

ÿj (t)+2jjvj ẏj +v2
j yj =Djr g

LT

0

Fj s
nl

i=1

d(x− x̄i )Fi dx, (23)

where

Djr =1/(mlrM
2
j ), c/mlr =2jjvj and s

nl

i=1

d(x− x̄i )Fi

is the Dirac representation of the moving loads along the bridge, where Fi could be given
in the general form as

Fi (t)=F0i +F1i sin (v� it+fi ).

The transverse deflection of the rth span at xr (local position in the rth span) is given by

w(xr , t)= s
nmode

j=1

fjr (xr )yj (t). (24)

The development of the second term of equation (23) gives the generalized load pj (t) of
mode j,

Djr g
LT

0

Fj s
nl

i=1

d(x− x̄i )Fi dx=Djr s
nspan

p=1 0g
lp

0

fjp s
nl

i=1

d(x− x̄i )Fi dx1
=Djr s

nl

i=1

Fj (x̄i )Fi = pj (t). (25)

If the load Fi is on the span m (Figure 4), one has

Fj (x̄i )Fi =fjm (xm )Fi , (26)

where

xm = x̄i − s
m−1

r=1

lr

and x̄i is given in function of the position of the first load by

x̄i = x̄1 − s
i−1

j=1

aj ,

with aj defined as the relative position between the loads Fj and Fj−1 (Figure 3).

Figure 4. Identification of the local position xm of the load Fi in the span m.
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The solution of linear equation (23) could be obtained using the Duhamel integral

yj (t)=g
t

0

pj (t)h(t− t) dt+U0(t), (27)

where h(t− t) is the response of the structure to an impulse of unit magnitude applied
at time t= t:

h(t− t)= (e−jjvj (t− t)/vd ) sin (vd (t− t)), (28)

where vd =vjz1− j2
j . The solution due to the initial conditions is given by

U0(t)= e−jjvj (yj (0) cos (vd )+ ((ẏj (0)+ jjvjyj (0))/vd ) sin (vdt)). (29)

2.5.   

The solution can be more easily obtained by transforming equation (23) into the
frequency domain using the Fourier transform technique [8, 4]:

Pf(V)=g
+a

−a

p(t) e−iVt dt, Yf(V)=g
+a

−a

y(t) e−iVt dt,

iVYf(V)=g
+a

−a

ẏ(t) e−iVt dt, −V2Yf(V)=g
+a

−a

ÿ(t) e−iVt dt. (30)

Using equations (30), equation (23) becomes

(−V2 + iV2jjvj +v2
j )Yf(V)=Pf(V)

and thus the solution in the frequency domain is

Yf(V)=Hf(V) · Pf(V), (31)

where the transfer function is given by

Hf(V)=1/(−V2 +2iVjjvj +v2
j ).

The solution in the time domain is obtained by the inverse transform as follows:

yj (t)=
1
2p g

+a

−a

Yf(V) eiVt dV, ẏj (t)=
1
2p g

+a

−a

iVYf(V) eiVt dV,

ÿj (t)=
1
2p g

+a

−a

−V2Yf(V) e−iVt dV. (32)

Considerations of initial conditions are presented in section 3.

3. DISCRETE FOURIER TRANSFORM

The dynamic finite element model leads to an exact evaluation of frequencies and modes
(vj , Fj ). The dynamic response of multi-span beam-structure can be reduced to a numerical
solution of equations (31) and (32) for each mode j using the discrete Fourier transform.
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The discrete evaluation of Pf (V) is

Pf (nDV)=Dt s
N−1

k=0

p(kDt) e−2pikn/N. (33)

One should choose the time period T2 large enough to cover the response characteristics
of the system:

Dt=T2/N, T2 =T1 +T, T1 e 2p/v1, (34)

where T1 is the fundamental period of the structure and T is the period of the exciting load.
In order to discretize the pulsation interval V, one uses DV=2p/T2 with
0EVEVmax =2p/Dt, where Vmax is the Nyquist pulsation. The choice of Dt is such that
fs E 1/2Dt, where fs is the highest frequency present in the signal and participating in the
response of the structure. One should verify that

DtE 1/2fmax . (35)

The discrete representation requires a judicious choice of T2 and N which defines Dt, DV.
One may remark that the time and pulsation are divided into N steps. The response of
the structure for each mode is obtained in four steps as explained hereafter.

Step 1: Discrete representation of Pf (nDV).

p(kDt):Pf (nDV)=Dt s
N−1

k=0

p(kDt) e−2pikn/N, n=0, . . . , N−1. (36)

Evaluate Pf (0), Pf (1), Pf (nDV), . . . , Pf ((N−1)DV).

Step 2: Discrete evaluation of Hf (nDV).

h(kDt):Hf (nDV)=1/(−(nDV)2 + i(nDV)2vj+v2). (37)

Step 3: Solution by inverse transform of Yf (nDV), n=0, . . . , N−1.

Yf (nDV)=Hf (nDV)Pf (nDV):y(kDt)=
DV

2p
s

N−1

k=0

Yf (nDV) eiknDtDV. (38)

Compute the velocity and the acceleration (optional).

ẏ(kDt)=
DV

2p
s

N−1

k=0

inDVYf (nDV) eiknDtDV, ÿ(kDt)=
DV

2p
s

N−1

k=0

−(nDV)2Yf(nDV) eiknDtDV.

(39, 40)

The numerical implementation of these three steps is done by using the FFT algorithm
[7–9]. The responses y(kDt) and ẏ(kDt) obtained in step 3 do not satisfy the initial
conditions. In order to obtain the response with correct initial conditions, one simply
superimposes the influence of initial conditions using the same technique as presented in
equation (29).
Step 4: Corrective transient response based on initial conditions.

By applying the initial conditions to the solution obtained by the FFT algorithm y(kDt)
[8, 9], the exact solution is noted by y*(kDt) and the value y(0) is known, with the initial
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Figure 5. Multi-span beam with one element per span with: L=1·0 m, ml =1·0 kg/m, A=0·01 m2,
I=8·33×10−6 m4 and E=12·0×104 N/m2.

T 1

Frequencies (Hz) of free vibration of multi-span beam in Figure 5

Number of spans Present study (D.S.M.) Analytical solution [18]
Mode number Mode number

ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
1 2 3 1 2 3

1 0·5595 3·5068 9·918 0·5595 3·5068 9·820
2 0·3926 2·4538 3·534 0·3923 2·4494 3·526
3 0·3981 2·0266 2·921 0·3779 2·0284 2·919
4 0·3770 1·8432 2·453 0·3769 1·8430 2·455
5 0·3769 1·7499 2·185 0·3769 1·7500 2·185
6 0·3769 1·6968 2·019 0·3769 1·6966 2·020
7 0·3769 1·6640 1·911 0·3769 1·6635 1·911
8 0·3769 1·6424 1·837 0·3769 1·6430 1·838

velocity given by

ẏ(0)=−
DV2

p
s

N−1

k=0

n Im {Yf (nDV)}. (41)

The difference between the initial conditions in the transient and periodic responses can
be evaluated by

Dy(0)= y*(0)− y(0), Dẏ(0)= ẏ*(0)− ẏ(0), (42)

where r(t) is the transient response due to a unit displacement at t=0:

r(t)= e−jvt (cos (vdt)+ jv sin (vdt)/vd ), (43)

and s(t) is the transient response due to a unit velocity at t=0:

s(t)= e−jvt sin (vdt)/vd. (44)

The correct response is given by

y*(kDt)= y(kDt)+ k1(kDt)+ k2(kDt), (45)

where

k1(t)=Dy(0)r(t), k2(t)=Dẏ(0)s(t), (46)

such that in equation (29) one has k1(kDt)+ k2(kDt)=U0(kDt).
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Figure 6. Beam under three moving forces with various values of distances a between forces.

The final solution is obtained by the mode superposition process:

w(xr , t)= s
j=1,nmode

fjr (xr )y*j (t), (47)

where the number of modes (nmode) depends of the number of moving loads and the
speed. One may consider ten to fifteen modes to evaluate displacements, velocities,
accelerations and moments. More modes must be included in the analysis to evalute the
shear forces.

4. NUMERICAL EXAMPLES

Three examples are presented which relate to beam structures under moving loads. The
objectives of these examples are to demonstrate: (1) the precision of dynamic finite
elements for evaluation of the frequencies of multi-span beam structures (example 1), (2)
the precision of the dynamic modal approach coupled with a FFT to predict the response
of single span (example 2) and multi-span structures (example 3) under a convoy of moving
loads with various speeds.

4.1.    - -

A beam-structure with multiple spans as shown in Figure 5 is considered. Equal length
spans are added in order to evaluate the precision of frequencies estimated with the

T 2

Properties and frequencies of a single span

Properties Mode number Frequencies (Hz)

L 24·384 (m) 1 1·99
ml 9·576×103 (kg/m) 2 7·99
A 0·594 (m2) 3 17·99
I 2·95×10−3 (m4) 4 31·99
E 19·0×1011 (N/m2) 5 49·99
g 9·81 (m/s2) 6 71·99
F 5324·256 (N) 7 97·99
n 22·5 (m/s) 8 127·99

9 161·99
10 199·99
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Figure 7. Dynamic vertical deflection at beam centre for different positions of moving loads a=L/4; one
element; n=22·5 m/s; x/L= nt/L; ——, present study; w, analytical solution.

dynamic element stiffness model (DSM) for various multi-span beams. One element is
used for each span. The different parameters are defined in Figure 5. The analytic
solution is given by Blevins [18] and results are compared in Table 1 for the first three
modes and for span numbers varying from 1 to 8. As expected, the frequencies obtained
by DSM have the same precision as the analytical values. This precision is maintained for
every mode.

4.2.         

A one span beam under three moving loads (Figure 6) without dampling was studied.
This example has been studied by Humar [4]. The properties of the structure are given in
Table 2 with frequencies obtained by the dynamic stiffness model (DSM).

By using the model presented in the previous sections based on modal representation
with DSM and FFT techniques, the dynamic response under three moving loads at
constant velocity n=22·5 m/s has been studied. The analytic solution [8] is given as

Figure 8. Dynamic vertical deflection at the centre of the beam for different values of a between the three
moving loads; one element; n=22·5 m/s; x/L= nt/L; —···—, a=L/8; ·····, a=L/4; —·—, a=L/2; ——,
a=1·03×L.
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Figure 9. Variation of the DAF as a function of the velocities (b) and the positions of the load
(0E g= nt/LE 1); solution at mid-span and with one moving-load. g: —w—, 0·2; — —, 0·4; —w—, 0·6;
– –r– –, 0·7; —w· —, 0·757; — –r—, 0·8; —W– –, 0·9; – –Q—, 1·0.

Figure 10. Three-span continuous beam with non uniform cross-section under moving force (3 elements, 4
nodes and 4 d.o.f.).

follows:

w(x, t)=w1(x, t)+w2(x, t),

w1(x, t)= s
nl

k=1 02Fk

mlL
s
a

j=1

sin ( jpx/L)
(v2

j −V2
j ) 6sin (Vjtk )−

Vj

vj
sin (vjtk )71, Vj = j

pn

L
,

if 0E tk EL/n, 0E x̄k = x̄1 − s
k−1

l=1

al EL;

w2(x, t)= s
nl

k=1

s
N

j=1X 2
mlL 0yj (tk ) cos vj (tk − tk )+

ẏj (tk )
vjd

sin vj (tk − tk )1 sin
jpx
L

if tk =0s
k

l=1

al−1 +L1>n, x̄k = x̄1 − s
k−1

l=1

al eL;

nl is the number of loads and ai is the distance between forces Fi and Fi−1.
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T 3

Beam structure properties and natural frequencies

Properties Mode number Frequencies (Hz)

L 60 (m) 1 6·204
r 1·0×103 (kg/m) 2 7·581
A 0·51×10−2 (m2) 3 11·974
EI 1·96×109 (N/m3) 4 21·163
E 10·48×1010 (N/m2) 5 24·207
F 9·48×103 (N) 6 26·439

7 37·282
8 53·579
9 56·642

10 64·130

Figure 11. Relation between the dynamic amplification factor (DAF) and the velocity. DAF at: —r—, A;
—w– –, B; —q—, C.

In this example, the choice of Dt is based on equation (35), with fmax = f5 =49·99 Hz
because the pulsation of a single moving load is given by (Biggs [19]): fload = n/2L
= 0·458 HzE f5. So Dt=1/2f5 =0.01 s and N=T/Dt=2·56 s/0·01=256 steps.

In Figure 7, the deflection at mid-span for different times identified with the position
of the first load is compared, remembering that only one element is used to discretize the
structure. The initial values of displacement and velocity are zero.

The dynamic deflection at the centre of the beam under a moving convoy of three forces,
for various values of distance a between forces, is shown in Figure 8. The results obtained
are in agreement with the analytical solution [8] given previously. The results show the
precision and reliability of the model developed in this study.

In the presented case of one moving load, the variation of the dynamic amplification
factor DAF, defined as the maximum dynamic deflection divided by the maximum static
deflection, is computed at the mid-span as a function of the position of the moving load
and its velocity. Results are presented in Figure 9 and are in good agreement with analytic
ones (Biggs [19]). One notes that the DAF is high and equal to 1·743 when t=0·81T1,
where t=L/n (or in Figure 9, b=v1L/n=5·1). In this case T1 =0·5 s (see Table 2), so
t=0·81×0·5=0·405 s and n=60·207 m/s. But for the false resonance (Biggs [19]) which
is given by v1structure =vload = pn/L, the DAF is only equal to 1·54. In this case (see Table 2),
v1structure =4p, so the velocity of the load is n=97·536 m/s.
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Figure 12. Dynamic and static vertical deflection at the centre of the first span: ——, n=35·57 m/s; – – –,
n=71·25 m/s; - - - -, static.

Figure 13. Dynamic and static vertical deflection at the centre of the second span: ——, n=35·57 m/s; – – –,
n=71·25 m/s; - - - -, static.

4.3.        

Finally, a multi-span beam under a moving load (Figure 10) is investigated. This
example has been studied by Hayashikawa and Watanabe [2]. The structural properties
and the values of the first ten frequencies are given in Table 3. By using the present dynamic
stiffness-FFT model, we study the response for two speeds n=35·57 m/s and
n=71·25 m/s, using one element per span (three elements for the bridge). In the example,
the choice of Dt is based on equation (35), with fmax = f5 =24·207 Hz because the pulsation
of a single moving load is given by (Biggs [19]): fload/span = n/2L=1·78 HzE f5. This gives
Dt=1/2f5 =0·02 s and N=T/Dt=2·56 s/0·02=128 steps.

In Figure 11, the influence of load speed on the amplification of displacement at three
mid-points A, B and C of each span is presented. It can be seen that the first span mid-point
is most sensitive to load speed and that the following points can be made: (1) the DAF
increases for mid-points of first and last spans with higher velocities, while the maximum
effect is in the first mid-point A; (2) the influence of velocity on the dynamic mid-point
response of the middle span is not monotonous.

Figures 12 to 15 show the evolution of deflections at points A, B and C for different
positions of the moving load. It can be seen that the behaviour of curves in Figures 12–15
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Figure 14. Dynamic and static vertical deflection at the centre of the third span: ——, n=35·57 m/s; – – –,
n=71·25 m/s; - - - -, static.

and their extreme values are the same as those obtained by Hayashikawa and Watanabe
[2].

5. CONCLUSION

In this study, a new model for evaluating the dynamic response of multi-span structures
under a convoy of moving loads has been presented. The various aspects of this work are:

, presentation of a dynamic stiffness formulation within the framework of finite element
approximation;

, construction of an uncoupled modal model using exact dynamic finite element
eigenmodes;

, development of a model to predict the dynamic response employing a dynamic modal
representation coupled with the FFT technique.

The practical applications of the present model show that the dynamic response can be
captured in an exact way using only one element per span, because the dynamic

Figure 15. Dynamic vertical deflection at the points A, B and C with the velocity n=35·57 m/s: ——, wA ;
– – –. wB ; - - - -, wC .
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interpolation functions Ni defined in equation (10) satisfy exactly the equilibrium equation
(6) and, also, they are infinitely differentiable. The numerical solutions have,
approximately, the same precision as those provided by the analytical solutions. The
discretization error is related to the number of terms in the FFT and the number of modes
retained. This formulation is valid whatever the speeds of the moving force and thus it
is applicable for high speeds of the moving force. Also, it is applicable for short or long
spans until the small deformation hypothesis becomes invalid. For the case of heavy
moving masses, the formulation should be modified to take account of the coupling effect
between the modal components in equation (25) because the true inertial effect of the
moving mass should be included (Henchi et al. [20]).
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APPENDIX A: DYNAMIC STIFFNESS MATRIX OF BERNOULLI-EULER BEAM

The development of the equation (13) gives the exact following dynamic stiffness matrix:

kd1,1 kd1,2 kd1,3 kd1,4

[kd (a)]=
EI

L3(1− cC)
G
G

G

K

k

kd2,2 kd2,3 kd2,4 G
G

G

L

l

,
kd3,3 kd3,4

Sym. kd4,4

where

kd1,1 = a3L3(Cs+Sc), kd2,2 = aL3(Cs+Sc), kd1,2 = a2L3Ss,

kd2,3 = a2L3(C− c), kd1,3 = a3L3(s+S), kd2,4 = aL3(S− s),

kd1,4 = a2L3(C− c), kd3,3 = a3L3(Cs+Sc), kd4,4 = aL3(Cs+Sc),

kd3,4 =−a2L3Ss,

and where c=cos aL, s=sin aL, C=cosh aL and S=sinh aL.

APPENDIX B: NOTATION

A cross-section of the beam
d(x− x̄k ) Dirac delta function at position x= x̄k

Dt, Dtcr time step and critical time step
EI flexural stiffness
frn (xr ) eigenfunction of mode n relative to the span r
Fn (Xr ) eigenfunction of mode n relative to the total continuous structure
Fk (t) kth moving load
lr ; LT length of the rth span and total length of the continuous beam
[K(v2)]; dynamic stiffness matrix
[M(v2)] dynamic mass matrix
Ni (a, x) dynamic shape function i
nl number of loads present on the bridge
�N� vector of dynamic shape functions
Pf(V) generalised load in frequency domain
pj (t) generalised load of mode j
ml mass per unit of length
Tj , fj , vj period, frequency and pulsation of the mode j
T period of excitation
ym , ẏm , ÿm modal displacement, velocity and acceleration of mode m
Yf(V) modal solution in frequency domain
[x whatever the value of x
{Un} vector of the system global displacements
{wn} element local nodal displacements


